	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	AVE.
# Surveyed (S)	16	5	3	13	9	13	17	18	16	8	8	11	7	6	9	9	16	20	12	14	11	11.5
# Visited (V)	18	4	10	12	8	7	11	5	6	3	4	8	6	4	3	2	6	3	3	3	3	6.1
Total # sites	34	9	13	25	17	20	28	23	22	11	12	19	13	10	12	11	22	23	15	17	14	17.6
BUBO																						
BUBO observed	at 19	sites (1 to 1′	1 visite	ed / ye	ar). Bre	eding	detect	ed at 7	' sites	and pi	robabl	y 2 oth	ers (0	to 8 vi	sited /	year).					
BUBO sites	11	3	6	7	8	9	9	10	8	5	6	6	6	6	7	6	8	11	9	10	9	7.6
Breeding sites	6	2	3	3	5	5	5	6	5	5	5	5	4	4	6	5	5	8	6	7	8	5.1
Y	5	2	1	1	3	4	4	4	3	4	4	4	1	3	4	3	4	6	5	5	6	3.6
Y / sites	45%	67%	17%	14%	38%	44%	44%	40%	38%	80%	67%	67%		50%	57%	50%	50%	55%	56%	50%	67%	48%
Y / br. sites	83%	100%	33%	33%	60%	80%	80%	67%	60%	80%	80%	80%	25%	75%	67%	60%	80%	75%	83%	71%	75%	69%
Y + Y?	5	2	1	1	3	4	4	4	3	4	4	4	3	3	5	4	4	6	5	7	6	3.9
(Y+Y?)/ br.sites	83%	100%	33%	33%	60%	80%	80%	67%	60%	80%	80%	80%	75%	75%	83%	80%	80%	75%	83%	100%	100%	76%
А	3	0	1	4	1	3	1	1	3	1	0	1	1	1	1	0	1	1	1	0	1	1.2
A / sites	27%	0%	17%	57%	13%	33%	11%	10%	38%	20%	0%	17%	17%	17%	14%	0%	13%	9%	11%	0%	11%	16%
RACAS																						
RACAS observe	d at 5	3 sites	(1 to '	19 visi	ted / y	ear). B	reedin	g deteo	cted at	29 sit	es (1 t	o 14 v	isited /	' year).								
RACAS sites	19	6	6	12	8	14	17	12	13	7	9	11	10	8	9	8	13	18	11	14	11	11.2
Breeding sites	9	3	2	7	6	7	12	8	9	3	4	6	6	5	7	6	7	14	6	8	7	6.8
Y	5	1	0	5	4	4	6	5	4	0	3	4	2	4	4	5	6	12	4	6	4	4.2
Y / sites	26%	17%	0%	42%	50%	29%	35%	42%	31%	0%	33%	36%				63%	46%	67%	36%	43%	36%	36%
Y / br. sites	56%	33%	0%	71%	67%	57%	50%	63%	44%	0%	75%	67%	33%	80%	57%	83%	86%	86%	67%	75%	57%	57%
Y + Y?	5	2	0	5	5	4	7	5	5	1	3	4	2	4	4	5	6	12	4	6	4	4.4
(Y+Y?)/br.sites	56%	67%	0%	71%	83%	57%	58%	63%	56%	33%	75%	67%	33%	80%	57%	83%	86%	86%	67%	75%	57%	62%
Α	12	3	1	3	1	6	7	4	4	2	4	5	4	3	2	1	5	2	3	4	1	3.7
A / sites	63%	50%	17%	25%	13%	43%	41%	33%	31%	29%	44%	45%	40%	38%	22%	13%	38%	11%	27%	29%	9%	31%

 Table 6. Summary.
 Annual numbers and percentages of sites visited and detection of 4 amphibian species, 1987 to 2007.

RAAU	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	
RAAU observed	at 14	sites (0 to 7	visited	l / yeaı	r). Bree	eding c	letecte	d at 11	sites	(0 to 6	visite	d / yea	ar).								
RAAU sites	1	0	1	5	5	7	6	7	7	4	3	3	1	3	4	4	5	2	2	2	2	3.5
Breeding sites	0	0	0	2	3	5	5	6	5	4	2	2	1	2	3	3	4	1	2	1	2	2.5
Y	0	0	0	1	2	4	3	6	3	2	2	1	1	1	2	3	3	1	2	1	2	1.9
Y / sites	0%	0%	0%	20%	40%	57%	50%	86%	43%	50%	100%	33%	100%	33%	50%	75%	60%	50%	100%	50%	100%	52%
Y / br. sites	0%	0%	0%	50%	67%	80%	60%	100%	60%	50%	100%	50%	100%	50%	67%	100%	75%	100%	100%	100%	100%	67%
Y + Y?	0	0	0	1	2	4	3	6	3	2	2	1	1	1	3	3	3	1	2	1	2	2.0
(Y+Y?)/br.sites	0%	0%	0%	50%	67%	80%	60%	100%	60%	50%	100%	50%	100%	50%	100%	100%	75%	100%	100%	100%	100%	69%
A	0	0	0	3	2	2	1	1	3	1	0	0	0	2	0	1	1	1	0	1	0	0.9
A / sites	0%	0%	0%	60%	40%	29%	17%	14%	43%	25%	0%	0%	0%	67%	0%	25%	20%	50%	0%	50%	0%	21%
RAPR																						
RAPR has been	obser	ved at	only 1	site, a	and br	eeding	g occur	s there	Э.													
Y	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	1	1	1	1	
Y + Y?	0	0	1	0	0	0	1	1	1	1	1	0	1	0	0	0	1	1	1	1	1	
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	